CellDART: Cell type inference by domain adaptation of single-cell and spatial transcriptomic data

3 years ago   •   1 min read

By Portrai



Deciphering the cellular composition in genome-wide spatially resolved transcriptomic data is a critical task to clarify the spatial context of cells in a tissue. In this study, we developed a method, CellDART, which estimates the spatial distribution of cells defined by single-cell level data using domain adaptation of neural networks and applied it to the spatial mapping of human lung tissue. The neural network that predicts the cell proportion in a pseudospot, a virtual mixture of cells from single-cell data, is translated to decompose the cell types in each spatial barcoded region. First, CellDART was applied to mouse brain and human dorsolateral prefrontal cortex tissue to identify cell types with a layer-specific spatial distribution. Overall, the suggested approach was competent to the other computational methods in predicting the spatial localization of excitatory neurons. Besides, CellDART was capable of decomposing cellular proportion in mouse hippocampus Slide-seq data. Furthermore, CellDART elucidated the cell type predominance defined by the human lung cell atlas across the lung tissue compartments and it corresponded to the known prevalent cell types. CellDART is expected to help to elucidate the spatial heterogeneity of cells and their close interactions in various tissues.


Bae, S., Na, K. J.†, Koh, J., Lee, D. S., Choi, H.*, & Kim, Y. T.* (2021).

Spread the word

Keep reading