Discovery of potential imaging and therapeutic targets for severe inflammation in COVID-19 patients

In this study, previously published single-cell RNA-sequencing data of bronchoalveolar lavage fluid cells from thirteen COVID-19 patients were analyzed with publicly available databases for surface and imageable targets.

2 years ago   •   1 min read

By Portrai

Scientific reports, 11(1), 1-9.

Abstract

The Coronavirus disease 2019 (COVID-19) has been spreading worldwide with rapidly increased number of deaths. Hyperinflammation mediated by dysregulated monocyte/macrophage function is considered to be the key factor that triggers severe illness in COVID-19. However, no specific targeting molecule has been identified for detecting or treating hyperinflammation related to dysregulated macrophages in severe COVID-19. In this study, previously published single-cell RNA-sequencing data of bronchoalveolar lavage fluid cells from thirteen COVID-19 patients were analyzed with publicly available databases for surface and imageable targets. Immune cell composition according to the severity was estimated with the clustering of gene expression data. Expression levels of imaging target molecules for inflammation were evaluated in macrophage clusters from single-cell RNA-sequencing data. In addition, candidate targetable molecules enriched in severe COVID-19 associated with hyperinflammation were filtered. We found that expression of SLC2A3, which can be imaged by [18F]fluorodeoxyglucose, was higher in macrophages from severe COVID-19 patients. Furthermore, by integrating the surface target and drug-target binding databases with RNA-sequencing data of severe COVID-19, we identified candidate surface and druggable targets including CCR1 and FPR1 for drug delivery as well as molecular imaging. Our results provide a resource in the development of specific imaging and therapy for COVID-19-related hyperinflammation.

Authors

Lee, H., Park, J., Im, H. J.*, Na, K. J.*, & Choi, H.*(2021)

Spread the word

Keep reading